Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611919

ABSTRACT

The administration of magnetic resonance imaging (MRI) contrast agents (CAs) has been conducted since 1988 by clinicians to enhance the clarity and interpretability of MR images. CAs based on gadolinium chelates are the clinical standard used worldwide for the diagnosis of various pathologies, such as the detection of brain lesions, the visualization of blood vessels, and the assessment of soft tissue disorders. However, due to ongoing concerns associated with the safety of gadolinium-based contrast agents, considerable efforts have been directed towards developing contrast agents with better relaxivities, reduced toxicity, and eventually combined therapeutic modalities. In this context, grafting (or encapsulating) paramagnetic metals or chelates onto (within) carbon-based nanoparticles is a straightforward approach enabling the production of contrast agents with high relaxivities while providing extensive tuneability regarding the functionalization of the nanoparticles. Here, we provide an overview of the parameters defining the efficacy of lanthanide-based contrast agents and the subsequent developments in the field of nanoparticular-based contrast agents incorporating paramagnetic species.


Subject(s)
Contrast Media , Nanostructures , Gadolinium , Carbon , Chelating Agents , Magnetic Resonance Imaging
2.
Nanoscale ; 13(39): 16509-16524, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34590110

ABSTRACT

The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.


Subject(s)
Contrast Media , Silicon Dioxide , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Optical Imaging
3.
J Mater Chem B ; 9(25): 5055-5068, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34132320

ABSTRACT

Bimodal sub-5 nm superparamagnetic iron oxide nanoparticles (SPIO-5) coated with polyethylene glycol of different chain lengths (i.e. PEG-800, -2000 and -5000) have been prepared and characterized. Fluorescence properties have been obtained by mean of the grafting of a near-infrared-emitting dye (NIR-dye) onto the surface of the oxide, thanks to the carboxylic acid functions introduced towards an organosilane coating. Such modification allowed us to follow in vivo their biodistribution and elimination pathways by T1-w and T2-w high-field magnetic resonance imaging (MRI), as well as by optical and optoacoustic imaging. Interestingly, it has been highlighted that for a given composition, the thickness of the coating strongly influences the pharmacokinetic properties of the administrated SPIO-5.


Subject(s)
Magnetic Iron Oxide Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Animals , Female , Mice , Mice, Hairless , Molecular Structure , Optical Imaging , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...